Mechatronics Engineering
Course Details

KTO KARATAY UNIVERSITY
Mühendislik ve Doğa Bilimleri Fakültesi
Programme of Mechatronics Engineering
Course Details
Mühendislik ve Doğa Bilimleri Fakültesi
Programme of Mechatronics Engineering
Course Details

| Course Code | Course Name | Year | Period | Semester | T+A+L | Credit | ECTS |
|---|---|---|---|---|---|---|---|
| 05561905 | CNC-Numerical Controlled Machines | 3 | Spring | 6 | 3+0+0 | 5 | 5 |
| Course Type | Elective |
| Course Cycle | Bachelor's (First Cycle) (TQF-HE: Level 6 / QF-EHEA: Level 1 / EQF-LLL: Level 6) |
| Course Language | Turkish |
| Methods and Techniques | - |
| Mode of Delivery | Face to Face |
| Prerequisites | - |
| Coordinator | - |
| Instructor(s) | - |
| Instructor Assistant(s) | - |
Course Content
Numerically controlled machine tools motion elements, control circuits, power units General construction of numerically controlled machine tools Coordinate systems in programming, control types
Objectives of the Course
To gain information about the equipment of machine tools with numerical control (SD) and the parts program used in these machines.
Contribution of the Course to Field Teaching
| Basic Vocational Courses | |
| Specialization / Field Courses | X |
| Support Courses | |
| Transferable Skills Courses | |
| Humanities, Communication and Management Skills Courses |
Relationships between Course Learning Outcomes and Program Outcomes
| Relationship Levels | ||||
| Lowest | Low | Medium | High | Highest |
| 1 | 2 | 3 | 4 | 5 |
| # | Program Learning Outcomes | Level |
|---|---|---|
| P1 | Adequate knowledge of mathematics, science, and Mechatronics Engineering disciplines; Ability to use theoretical and applied knowledge in these fields in solving complex engineering problems. | 5 |
| P3 | Ability to design a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose | 5 |
Course Learning Outcomes
| Upon the successful completion of this course, students will be able to: | |||
|---|---|---|---|
| No | Learning Outcomes | Outcome Relationship | Measurement Method ** |
| O1 | Students will have basic knowledge about technology, production and manufacturing concepts. | P.1.45 | 1,7 |
| O2 | They have the infrastructure to follow current and contemporary issues in machining processes. | P.3.22 | 1,7 |
| ** Written Exam: 1, Oral Exam: 2, Homework: 3, Lab./Exam: 4, Seminar/Presentation: 5, Term Paper: 6, Application: 7 | |||
Weekly Detailed Course Contents
| Week | Topics |
|---|---|
| 1 | SD General description of machine tools |
| 2 | CNC machine tool controllers |
| 3 | SD Motion elements of machine tools, control circuits, power units |
| 4 | Motion systems of CNC machines |
| 5 | General construction of numerically controlled machine tools |
| 6 | Coordinate systems |
| 7 | Coordinate systems in programming, control types |
| 8 | Mid-Term Exam |
| 9 | Part programming in turning operations |
| 10 | Programs in turning techniques |
| 11 | G Codes and program types |
| 12 | G Codes, interpolations, general structure of CAM programs and introduction of UniGraphics program |
| 13 | Applications and sample programs |
| 14 | Applications and sample programs |
Textbook or Material
| Resources | Sayısal Denetimli Takım Tezgahları, Prof. Dr. Mustafa AKKURT, Birsen yayınları. CNC Programming Handbook, P. Smid, Industrial Press, 2000. |
Evaluation Method and Passing Criteria
| In-Term Studies | Quantity | Percentage |
|---|---|---|
| Attendance | - | - |
| Laboratory | - | - |
| Practice | 1 | 20 (%) |
| Course Specific Internship (If Any) | - | - |
| Homework | - | - |
| Presentation | - | - |
| Projects | - | - |
| Quiz | - | - |
| Midterms | 1 | 30 (%) |
| Final Exam | 1 | 50 (%) |
| Total | 100 (%) | |
ECTS / Working Load Table
| Quantity | Duration | Total Work Load | |
|---|---|---|---|
| Course Week Number and Time | 14 | 3 | 42 |
| Out-of-Class Study Time (Pre-study, Library, Reinforcement) | 14 | 3 | 42 |
| Midterms | 1 | 20 | 20 |
| Quiz | 0 | 0 | 0 |
| Homework | 0 | 0 | 0 |
| Practice | 1 | 20 | 20 |
| Laboratory | 0 | 0 | 0 |
| Project | 0 | 0 | 0 |
| Workshop | 0 | 0 | 0 |
| Presentation/Seminar Preparation | 0 | 0 | 0 |
| Fieldwork | 0 | 0 | 0 |
| Final Exam | 1 | 25 | 25 |
| Other | 0 | 0 | 0 |
| Total Work Load: | 149 | ||
| Total Work Load / 30 | 4,97 | ||
| Course ECTS Credits: | 5 | ||
Course - Learning Outcomes Matrix
| Relationship Levels | ||||
| Lowest | Low | Medium | High | Highest |
| 1 | 2 | 3 | 4 | 5 |
| # | Learning Outcomes | P1 | P3 |
|---|---|---|---|
| O1 | Students will have basic knowledge about technology, production and manufacturing concepts. | 5 | - |
| O2 | They have the infrastructure to follow current and contemporary issues in machining processes. | - | 5 |
