İşleminiz Devam Ediyor.
Lütfen Bekleyiniz...
Dersin Ayrıntıları
KTO KARATAY ÜNİVERSİTESİ
Mühendislik ve Doğa Bilimleri Fakültesi
Bilgisayar Mühendisliği Programı
Ders Bolognaları
Ders Kodu Ders Adı Yıl Dönem Yarıyıl T+U+L Kredi AKTS
05051090 Örüntü Tanımaya Giriş 3 Güz 5 3+0+0 3 5
Dersin Türü Seçmeli
Dersin Düzeyi Lisans (TYYÇ: 6. Düzey / QF-EHEA: 1. Düzey / EQF-LLL: 6. Düzey)
Dersin Dili Türkçe
Yöntem ve Teknikler -
Dersin Veriliş Şekli Yüz Yüze
Ön Koşullar yok
Dersin Koordinatörü -
Dersi Veren(ler) Doç. Dr. Ali ÖZTÜRK
Yardımcı(lar) -
Dersin Öğretim Eleman(lar)ı
Adı Soyadı Oda No. E-Posta Adresi Dahili Görüşme Saatleri
Doç. Dr. Ali ÖZTÜRK A-127 [email protected] 0 Perşembe
14.00-15.00
Dersin İçeriği
Öğrenme ve adopsiyon, Bayes karar teorisi, ayırıcı fonksiyonlar, parametrik teknikler, maksimum olabilirlik tahmini, Bayes tahmini, yeterli istatistik, parametrik olmayan teknikler, doğrusal ayırtaç fonksiyonlar, algoritma bağımsız otomatik öğrenme, sınıflandırıcılar, denetimsiz öğrenme, gruplaştırma.
Dersin Amacı
Bu dersin odak noktası örüntü tanıma tekniklerinin teori ve uygulanmaları üzerinedir. Kapsanan konular arasında, makine ile örüntü sınıflandırılması, öznitelik çıkarma, nesne tanıma, Bayes karar teorisi, parametrik ve parametrik olmayan örüntü tanıma, denetimli ve denetimsiz örüntü tanıma konuları bulunmakta ve bu konulara genel bir bakış sunulmaktadır.
Dersin Alan Öğretimini Sağlamaya Yönelik Katkısı
Temel Meslek Dersleri
Uzmanlık / Alan Dersleri
Destek Dersleri X
Aktarılabilir Beceri Dersleri
Beşeri, İletişim ve Yönetim Becerileri Dersleri
Dersin Öğrenim Kazanımlarının Program Kazanımları ile Olan İlişkileri
İlişki Düzeyleri
En Düşük Düşük Orta Yüksek En Yüksek
1 2 3 4 5
# Program Yeterlilikleri Düzey
P1 Matematik, fen bilimleri ve ilgili mühendislik disiplinine özgü konularda yeterli bilgi birikimi; bu alanlardaki kuramsal ve uygulamalı bilgileri, karmaşık mühendislik problemlerinde kullanabilme becerisi 5
P3 Karmaşık bir sistemi, süreci, cihazı veya ürünü gerçekçi kısıtlar ve koşullar altında, belirli gereksinimleri karşılayacak şekilde tasarlama becerisi; bu amaçla modern tasarım yöntemlerini uygulama becerisi 4
P10 Proje yönetimi, risk yönetimi ve değişiklik yönetimi gibi, iş hayatındaki uygulamalar hakkında bilgi; girişimcilik, yenilikçilik hakkında farkındalık; sürdürülebilir kalkınma hakkında bilgi 3
Dersin Öğrenim Kazanımları
Bu dersin başarılı bir şekilde tamamlanmasıyla öğrenciler şunları yapabileceklerdir:
No Öğrenme Çıktıları Prog. Yet. İlişkisi Ölçme Yöntemi **
Ö1 Temel Web P.5.1
Ö2 Veri tabanı sistemi kontrolü ve yönetimi bilgisi. P.4.11
Ö3 Aktarım yeteneği P.10.6
Ö4 Gömülü sistemleri anlaşılma P.4.16
Ö5 İşletim sistemi yapıları bilgisi ve farklılıkları. Doğru işletim sistemi seçimini yapma becerisi. P.4.19
** Yazılı Sınav: 1, Sözlü Sınav: 2, Ev Ödevi: 3, Lab./Sınav: 4, Seminer/Sunum: 5, Dönem Ödevi: 6, Uygulama: 7
Değerlendirme Yöntemi ve Geçme Kriterleri
Yarıyıl Çalışmaları Sayısı Katkı (%)
Devam - -
Laboratuvar - -
Uygulama - -
Derse Özgü Staj (Varsa) - -
Ödev - -
Sunum - -
Projeler - -
Kısa sınav (Quiz) - -
Ara Sınavlar 1 40 (%)
Yarıyıl Sonu Sınavı 1 60 (%)
Toplam 100 (%)
AKTS / Çalışma Yükü Tablosu
Etkinlik Sayı Süre Toplam İş Yükü (Saat)
Ders Hafta Sayısı ve Saati 14 3 42
Sınıf Dışı Ders Çalışma Süresi (Ön çalışma, Kütüphane, Pekiştirme) 14 2 28
Ara Sınav 1 3 3
Kısa Sınav 0 0 0
Ödev 0 0 0
Uygulama 0 0 0
Laboratuvar 0 0 0
Proje 0 0 0
Atölye 0 0 0
Sunum/Seminer Hazırlama 0 0 0
Alan Çalışması 0 0 0
Dönem Sonu Sınavı 1 3 3
Diğer 0 0 0
Toplam İş Yükü: 76
Toplam Yük / 30 2,53
Dersin AKTS Kredisi: 3
Ders - Öğrenme Çıktıları İlişkisi
İlişki Düzeyleri
En Düşük Düşük Orta Yüksek En Yüksek
1 2 3 4 5
# Öğrenme Çıktıları P4 P5 P10
Ö1 Veri tabanı sistemi kontrolü ve yönetimi bilgisi. 4 - -
Ö2 Gömülü sistemleri anlaşılma - 5 -
Ö3 İşletim sistemi yapıları bilgisi ve farklılıkları. Doğru işletim sistemi seçimini yapma becerisi. - - -
Ö4 Temel Web - - 3
Ö5 Aktarım yeteneği - - -