Civil Engineering
Course Details

KTO KARATAY UNIVERSITY
Mühendislik ve Doğa Bilimleri Fakültesi
Programme of Civil Engineering
Course Details
Mühendislik ve Doğa Bilimleri Fakültesi
Programme of Civil Engineering
Course Details

| Course Code | Course Name | Year | Period | Semester | T+A+L | Credit | ECTS |
|---|---|---|---|---|---|---|---|
| 99600004 | Calculus II | 1 | Spring | 2 | 4+0+0 | 4 | 5 |
| Course Type | Compulsory |
| Course Cycle | Bachelor's (First Cycle) (TQF-HE: Level 6 / QF-EHEA: Level 1 / EQF-LLL: Level 6) |
| Course Language | English |
| Methods and Techniques | - |
| Mode of Delivery | Face to Face |
| Prerequisites | - |
| Coordinator | - |
| Instructor(s) | Asst. Prof. Nurten URLU ÖZALAN |
| Instructor Assistant(s) | - |
Course Instructor(s)
| Name and Surname | Room | E-Mail Address | Internal | Meeting Hours |
|---|---|---|---|---|
| Asst. Prof. Nurten URLU ÖZALAN | A-130 | [email protected] | 7880 |
Course Content
Series. Series with positive terms, series with arbitrary terms, absolute and conditional convergence, power series, Taylor and Maclaurin series. Vector maths. Functions of several variables; limits, continuity, partial derivatives, chain rule, directional derivatives, maxima and minima, Lagrange multipliers, Taylor's formula. Double and triple integrals, line integrals, Green's theorem in the plane, surface area and surface integral, divergence and Stokes theorem.
Objectives of the Course
The sequence Math 112-212 is the standard complete introduction to the concepts and methods of calculus. It is taken by all engineering students. The emphasis is on concepts, solving problems, theory and proofs. Students will develop their reading, writing and questioning skills in Mathematics.
Contribution of the Course to Field Teaching
| Basic Vocational Courses | |
| Specialization / Field Courses | |
| Support Courses | X |
| Transferable Skills Courses | |
| Humanities, Communication and Management Skills Courses |
Relationships between Course Learning Outcomes and Program Outcomes
| Relationship Levels | ||||
| Lowest | Low | Medium | High | Highest |
| 1 | 2 | 3 | 4 | 5 |
| # | Program Learning Outcomes | Level |
|---|---|---|
| P1 | Adequate knowledge in mathematics, science and related engineering discipline accumulation; theoretical and practical knowledge in these areas, complex engineering the ability to use in problems | 5 |
Course Learning Outcomes
| Upon the successful completion of this course, students will be able to: | |||
|---|---|---|---|
| No | Learning Outcomes | Outcome Relationship | Measurement Method ** |
| O1 | Knows basic mathematics knowledge and theorems | P.1.33 | 1 |
| O2 | Knows the applications of mathematics in engineering | P.1.34 | 1 |
| O3 | Knows numerical calculations and analysis | P.1.35 | 1 |
| O4 | Create mathematical models of engineering problems and simulate them | P.1.36 | 1 |
| ** Written Exam: 1, Oral Exam: 2, Homework: 3, Lab./Exam: 4, Seminar/Presentation: 5, Term Paper: 6, Application: 7 | |||
Weekly Detailed Course Contents
| Week | Topics |
|---|---|
| 1 | Infinite Sequences and Series. |
| 2 | Infinite Sequences and Series. |
| 3 | Infinite Sequences and Series. |
| 4 | Vector-Valued Functions |
| 5 | Vector-Valued Functions |
| 6 | Vector-Valued Functions |
| 7 | Vector-Valued Functions |
| 8 | Functions of Several Variables. |
| 9 | Functions of Several Variables. |
| 10 | Functions of Several Variables. |
| 11 | Multiple Integrals. |
| 12 | Multiple Integrals. |
| 13 | Integration in vector fields |
| 14 | Integration in vector fields |
Textbook or Material
| Resources | George B.Thomas, Maurice D. Weir, Joel R.Hass, Thomas'Calculus 11th Edition |
Evaluation Method and Passing Criteria
| In-Term Studies | Quantity | Percentage |
|---|---|---|
| Attendance | - | - |
| Laboratory | - | - |
| Practice | - | - |
| Homework | - | - |
| Presentation | - | - |
| Projects | - | - |
| Quiz | - | - |
| Midterms | 1 | 40 (%) |
| Final Exam | 1 | 60 (%) |
| Total | 100 (%) | |
ECTS / Working Load Table
| Quantity | Duration | Total Work Load | |
|---|---|---|---|
| Course Week Number and Time | 14 | 4 | 56 |
| Out-of-Class Study Time (Pre-study, Library, Reinforcement) | 14 | 4 | 56 |
| Midterms | 1 | 10 | 10 |
| Quiz | 0 | 0 | 0 |
| Homework | 5 | 5 | 25 |
| Practice | 0 | 0 | 0 |
| Laboratory | 0 | 0 | 0 |
| Project | 0 | 0 | 0 |
| Workshop | 0 | 0 | 0 |
| Presentation/Seminar Preparation | 0 | 0 | 0 |
| Fieldwork | 0 | 0 | 0 |
| Final Exam | 1 | 10 | 10 |
| Other | 0 | 0 | 0 |
| Total Work Load: | 157 | ||
| Total Work Load / 30 | 5,23 | ||
| Course ECTS Credits: | 5 | ||
Course - Learning Outcomes Matrix
| Relationship Levels | ||||
| Lowest | Low | Medium | High | Highest |
| 1 | 2 | 3 | 4 | 5 |
| # | Learning Outcomes | P1 |
|---|---|---|
| O1 | Knows basic mathematics knowledge and theorems | 5 |
| O2 | Knows the applications of mathematics in engineering | 5 |
| O3 | Knows numerical calculations and analysis | 5 |
| O4 | Create mathematical models of engineering problems and simulate them | 5 |
