Mechanical Engineering
Course Details

KTO KARATAY UNIVERSITY
Mühendislik ve Doğa Bilimleri Fakültesi
Programme of Mechanical Engineering
Course Details
Mühendislik ve Doğa Bilimleri Fakültesi
Programme of Mechanical Engineering
Course Details

| Course Code | Course Name | Year | Period | Semester | T+A+L | Credit | ECTS |
|---|---|---|---|---|---|---|---|
| 99600003 | Physics I | 1 | Autumn | 1 | 3+0+1 | 3 | 5 |
| Course Type | Compulsory |
| Course Cycle | Bachelor's (First Cycle) (TQF-HE: Level 6 / QF-EHEA: Level 1 / EQF-LLL: Level 6) |
| Course Language | English |
| Methods and Techniques | - |
| Mode of Delivery | Face to Face |
| Prerequisites | - |
| Coordinator | Asst. Prof. Necati VARDAR |
| Instructor(s) | Asst. Prof. Necati VARDAR |
| Instructor Assistant(s) | - |
Course Content
Physics and measurement, Vectors, One-Dimensional motion, Two-Dimensional motion, Laws of Motion, Circular Motion and Other Applications of Newton's Laws, Work and Kinetic Energy, Potential Energy and Conservation of Energy, Linear Momentum and Collisions, Rotation of a Rigid Body About a Fixed Axis, Rolling motion and Angular Momentum
Objectives of the Course
To introduce the basic concepts of physics, to formulate specific physical quantities including mechanical phenomena and to develop skills in problem solving. To provide understanding of physics along with practices in the real world, and to show physics to students by demonstrating their role on other branches of science with practical examples.
Contribution of the Course to Field Teaching
| Basic Vocational Courses | X |
| Specialization / Field Courses | |
| Support Courses | |
| Transferable Skills Courses | |
| Humanities, Communication and Management Skills Courses |
Relationships between Course Learning Outcomes and Program Outcomes
| Relationship Levels | ||||
| Lowest | Low | Medium | High | Highest |
| 1 | 2 | 3 | 4 | 5 |
| # | Program Learning Outcomes | Level |
|---|---|---|
| P1 | Adequate knowledge of mathematics, science and mechanical engineering disciplines; Ability to use theoretical and applied knowledge in these fields in solving complex engineering problems. | 5 |
Course Learning Outcomes
| Upon the successful completion of this course, students will be able to: | |||
|---|---|---|---|
| No | Learning Outcomes | Outcome Relationship | Measurement Method ** |
| O1 | Knows basic physics knowledge and theorems | P.1.5 | 1 |
| O2 | Know the engineering applications of basic physics knowledge and theorems | P.1.6 | 1 |
| ** Written Exam: 1, Oral Exam: 2, Homework: 3, Lab./Exam: 4, Seminar/Presentation: 5, Term Paper: 6, Application: 7 | |||
Weekly Detailed Course Contents
| Week | Topics |
|---|---|
| 1 | Physics and Measurement |
| 2 | vectors |
| 3 | Move in one dimension |
| 4 | Move in two dimensions |
| 5 | Newton`s laws of motion |
| 6 | Circular motion and other applications of Newton`s laws |
| 7 | Work and kinetic energy |
| 8 | Preservation of potential energy and energy |
| 9 | Linear momentum and collisions |
| 12 | A solid cismin rotates about a fixed axis |
| 14 | Torque and Angular Momentum |
Textbook or Material
| Resources | Young, Freedman, University Physics with Modern Physics Technology, 13th Edt, Addison-Wesley, ISBN 978-0321897442 |
Evaluation Method and Passing Criteria
| In-Term Studies | Quantity | Percentage |
|---|---|---|
| Attendance | - | - |
| Laboratory | - | - |
| Practice | - | - |
| Course Specific Internship (If Any) | - | - |
| Homework | - | - |
| Presentation | - | - |
| Projects | - | - |
| Seminar | - | - |
| Quiz | - | - |
| Midterms | 1 | 40 (%) |
| Final Exam | 1 | 60 (%) |
| Total | 100 (%) | |
ECTS / Working Load Table
| Quantity | Duration | Total Work Load | |
|---|---|---|---|
| Course Week Number and Time | 14 | 4 | 56 |
| Out-of-Class Study Time (Pre-study, Library, Reinforcement) | 14 | 3 | 42 |
| Midterms | 1 | 25 | 25 |
| Quiz | 0 | 0 | 0 |
| Homework | 0 | 0 | 0 |
| Practice | 0 | 0 | 0 |
| Laboratory | 0 | 0 | 0 |
| Project | 0 | 0 | 0 |
| Workshop | 0 | 0 | 0 |
| Presentation/Seminar Preparation | 0 | 0 | 0 |
| Fieldwork | 0 | 0 | 0 |
| Final Exam | 1 | 30 | 30 |
| Other | 0 | 0 | 0 |
| Total Work Load: | 153 | ||
| Total Work Load / 30 | 5,10 | ||
| Course ECTS Credits: | 5 | ||
Course - Learning Outcomes Matrix
| Relationship Levels | ||||
| Lowest | Low | Medium | High | Highest |
| 1 | 2 | 3 | 4 | 5 |
| # | Learning Outcomes | P1 |
|---|---|---|
| O1 | Knows basic physics knowledge and theorems | 5 |
| O2 | Know the engineering applications of basic physics knowledge and theorems | 5 |
