Electrical and Electronics Engineering
Course Details

KTO KARATAY UNIVERSITY
Mühendislik ve Doğa Bilimleri Fakültesi
Programme of Electrical and Electronics Engineering
Course Details
Mühendislik ve Doğa Bilimleri Fakültesi
Programme of Electrical and Electronics Engineering
Course Details

| Course Code | Course Name | Year | Period | Semester | T+A+L | Credit | ECTS |
|---|---|---|---|---|---|---|---|
| 05130301 | Math for Engineering II | 2 | Autumn | 3 | 4+0+0 | 4 | 5 |
| Course Type | Compulsory |
| Course Cycle | Bachelor's (First Cycle) (TQF-HE: Level 6 / QF-EHEA: Level 1 / EQF-LLL: Level 6) |
| Course Language | Turkish |
| Methods and Techniques | - |
| Mode of Delivery | Face to Face |
| Prerequisites | - |
| Coordinator | - |
| Instructor(s) | Asst. Prof. Nurten URLU ÖZALAN |
| Instructor Assistant(s) | - |
Course Instructor(s)
| Name and Surname | Room | E-Mail Address | Internal | Meeting Hours |
|---|---|---|---|---|
| Asst. Prof. Nurten URLU ÖZALAN | A-130 | [email protected] | 7880 |
Course Content
Basic theory and definitions. First-order equations and their solutions. Higher-order linear differential equations and their solutions. Laplace transforms. Systems of Differential Equations. Matrix methos for solving differential equations.
Objectives of the Course
To teach differential equations and applications
Contribution of the Course to Field Teaching
| Basic Vocational Courses | |
| Specialization / Field Courses | X |
| Support Courses | X |
| Transferable Skills Courses | |
| Humanities, Communication and Management Skills Courses |
Relationships between Course Learning Outcomes and Program Outcomes
| Relationship Levels | ||||
| Lowest | Low | Medium | High | Highest |
| 1 | 2 | 3 | 4 | 5 |
| # | Program Learning Outcomes | Level |
|---|---|---|
| P1 | Solid knowledge base in mathematics, natural sciences, and engineering-related subjects, along with the ability to solve complex engineering problems using this knowledge. | 5 |
Course Learning Outcomes
| Upon the successful completion of this course, students will be able to: | |||
|---|---|---|---|
| No | Learning Outcomes | Outcome Relationship | Measurement Method ** |
| O1 | Knows engineering applications of basic mathematical knowledge and theorems. | P.1.80 | 1 |
| O2 | Knows Differential Equations, solution methods and engineering applications. | P.1.81 | 1 |
| ** Written Exam: 1, Oral Exam: 2, Homework: 3, Lab./Exam: 4, Seminar/Presentation: 5, Term Paper: 6, Application: 7 | |||
Weekly Detailed Course Contents
| Week | Topics |
|---|---|
| 1 | Basic concepts |
| 2 | Separable and homogeneous differential equations, modeling |
| 3 | Separable and homogeneous differential equations, modeling |
| 4 | Exact differential equations, integral factors |
| 5 | Exact differential equations, integral factors |
| 6 | Higher order differential equations, |
| 7 | Higher order differential equations, |
| 8 | Applications of second order differential equations with constant coefficients |
| 9 | Applications of second order differential equations with constant coefficients |
| 10 | Linear differential equations |
| 11 | Linear differential equations |
| 12 | Solutions of linear differential equations with power series |
| 13 | Partial differential equations |
| 14 | Euler type differential equations |
Textbook or Material
| Resources | Ordinary Differential Equations, V.I. Arnold, MIT Press; (1978) |
Evaluation Method and Passing Criteria
| In-Term Studies | Quantity | Percentage |
|---|---|---|
| Attendance | - | - |
| Laboratory | - | - |
| Practice | - | - |
| Homework | - | - |
| Presentation | - | - |
| Projects | - | - |
| Quiz | - | - |
| Listening | - | - |
| Midterms | 1 | 40 (%) |
| Final Exam | 1 | 60 (%) |
| Total | 100 (%) | |
ECTS / Working Load Table
| Quantity | Duration | Total Work Load | |
|---|---|---|---|
| Course Week Number and Time | 14 | 3 | 42 |
| Out-of-Class Study Time (Pre-study, Library, Reinforcement) | 14 | 3 | 42 |
| Midterms | 1 | 32 | 32 |
| Quiz | 0 | 0 | 0 |
| Homework | 0 | 0 | 0 |
| Practice | 0 | 0 | 0 |
| Laboratory | 0 | 0 | 0 |
| Project | 0 | 0 | 0 |
| Workshop | 0 | 0 | 0 |
| Presentation/Seminar Preparation | 0 | 0 | 0 |
| Fieldwork | 0 | 0 | 0 |
| Final Exam | 1 | 34 | 34 |
| Other | 0 | 0 | 0 |
| Total Work Load: | 150 | ||
| Total Work Load / 30 | 5 | ||
| Course ECTS Credits: | 5 | ||
Course - Learning Outcomes Matrix
| Relationship Levels | ||||
| Lowest | Low | Medium | High | Highest |
| 1 | 2 | 3 | 4 | 5 |
| # | Learning Outcomes | P1 |
|---|---|---|
| O1 | Knows engineering applications of basic mathematical knowledge and theorems. | 5 |
| O2 | Knows Differential Equations, solution methods and engineering applications. | 5 |
