Electrical and Electronics Engineering
Course Details

KTO KARATAY UNIVERSITY
Mühendislik ve Doğa Bilimleri Fakültesi
Programme of Electrical and Electronics Engineering
Course Details
Mühendislik ve Doğa Bilimleri Fakültesi
Programme of Electrical and Electronics Engineering
Course Details

| Course Code | Course Name | Year | Period | Semester | T+A+L | Credit | ECTS |
|---|---|---|---|---|---|---|---|
| 05120203 | Math for Engineering I | 1 | Spring | 2 | 4+0+0 | 4 | 5 |
| Course Type | Compulsory |
| Course Cycle | Bachelor's (First Cycle) (TQF-HE: Level 6 / QF-EHEA: Level 1 / EQF-LLL: Level 6) |
| Course Language | Turkish |
| Methods and Techniques | - |
| Mode of Delivery | Face to Face |
| Prerequisites | - |
| Coordinator | - |
| Instructor(s) | Asst. Prof. Nurten URLU ÖZALAN |
| Instructor Assistant(s) | - |
Course Instructor(s)
| Name and Surname | Room | E-Mail Address | Internal | Meeting Hours |
|---|---|---|---|---|
| Asst. Prof. Nurten URLU ÖZALAN | A-130 | [email protected] | 7880 |
Course Content
Matrix algebra. Systems of linear algebraic equations. Eigenvalues @f8@f9and eigenvectors. Linear vector spaces. Fundamentals of vector analysis. Vector algebra. Line, surface and volume integrals. Green theorem in the plane, Stokes and Gauss theorems. Matrices. Decisive. Systems of linear equations. Characteristic values @f10@f11and characteristic vectors of matrices. Mixed numbers. Complex analytic functions, applications
Objectives of the Course
Students will be able to comprehend the concepts and methods of linear algebra. To help students develop their ability to solve problems using linear algebra. Connecting linear algebra to other fields
Contribution of the Course to Field Teaching
| Basic Vocational Courses | |
| Specialization / Field Courses | |
| Support Courses | X |
| Transferable Skills Courses | |
| Humanities, Communication and Management Skills Courses |
Relationships between Course Learning Outcomes and Program Outcomes
| Relationship Levels | ||||
| Lowest | Low | Medium | High | Highest |
| 1 | 2 | 3 | 4 | 5 |
| # | Program Learning Outcomes | Level |
|---|---|---|
| P1 | Solid knowledge base in mathematics, natural sciences, and engineering-related subjects, along with the ability to solve complex engineering problems using this knowledge. | 5 |
Course Learning Outcomes
| Upon the successful completion of this course, students will be able to: | |||
|---|---|---|---|
| No | Learning Outcomes | Outcome Relationship | Measurement Method ** |
| O1 | Knows Differential Equations, solution methods and engineering applications. | P.1.81 | 1 |
| O2 | Can build mathematical models of engineering systems and simulate them on the computer. | P.1.82 | 1 |
| ** Written Exam: 1, Oral Exam: 2, Homework: 3, Lab./Exam: 4, Seminar/Presentation: 5, Term Paper: 6, Application: 7 | |||
Weekly Detailed Course Contents
| Week | Topics |
|---|---|
| 1 | Matrices and Determinant. |
| 2 | Matrix algebra. |
| 3 | Systems of linear algebraic equations. |
| 4 | Eigenvalues and eigenvectors |
| 5 | Linear vector spaces. |
| 6 | Basis of vector analysis. |
| 7 | Vector algebra. |
| 8 | Line, surface and volume integrals. |
| 9 | Green`s theorem in the plane, Stokes and Gauss theorems. |
| 10 | Linear equation systems. |
| 11 | Characteristic vectors and characteristic values of matrices. |
| 12 | Complex numbers. |
| 13 | Complex analytical functions, applications. |
Textbook or Material
| Resources | Steven Leon,"Linear Algebra with Applications"6th Edi. (2001) |
| Steven Leon,"Linear Algebra with Applications"6th Edi. (2001) |
Evaluation Method and Passing Criteria
| In-Term Studies | Quantity | Percentage |
|---|---|---|
| Attendance | - | - |
| Laboratory | - | - |
| Practice | - | - |
| Homework | - | - |
| Presentation | - | - |
| Projects | - | - |
| Quiz | - | - |
| Listening | - | - |
| Midterms | 1 | 40 (%) |
| Final Exam | 1 | 60 (%) |
| Total | 100 (%) | |
ECTS / Working Load Table
| Quantity | Duration | Total Work Load | |
|---|---|---|---|
| Course Week Number and Time | 14 | 3 | 42 |
| Out-of-Class Study Time (Pre-study, Library, Reinforcement) | 14 | 3 | 42 |
| Midterms | 1 | 32 | 32 |
| Quiz | 0 | 0 | 0 |
| Homework | 0 | 0 | 0 |
| Practice | 0 | 0 | 0 |
| Laboratory | 0 | 0 | 0 |
| Project | 0 | 0 | 0 |
| Workshop | 0 | 0 | 0 |
| Presentation/Seminar Preparation | 0 | 0 | 0 |
| Fieldwork | 0 | 0 | 0 |
| Final Exam | 1 | 34 | 34 |
| Other | 0 | 0 | 0 |
| Total Work Load: | 150 | ||
| Total Work Load / 30 | 5 | ||
| Course ECTS Credits: | 5 | ||
Course - Learning Outcomes Matrix
| Relationship Levels | ||||
| Lowest | Low | Medium | High | Highest |
| 1 | 2 | 3 | 4 | 5 |
| # | Learning Outcomes | P1 |
|---|---|---|
| O1 | Knows Differential Equations, solution methods and engineering applications. | 5 |
| O2 | Can build mathematical models of engineering systems and simulate them on the computer. | 5 |
