Computer Engineering
Course Details
KTO KARATAY UNIVERSITY
Mühendislik ve Doğa Bilimleri Fakültesi
Programme of Computer Engineering
Course Details
Mühendislik ve Doğa Bilimleri Fakültesi
Programme of Computer Engineering
Course Details
Course Code | Course Name | Year | Period | Semester | T+A+L | Credit | ECTS |
---|---|---|---|---|---|---|---|
05081440 | Dıgıtal Image Processing | 4 | Spring | 8 | 3+0+0 | 3 | 5 |
Course Type | Elective |
Course Cycle | Bachelor's (First Cycle) (TQF-HE: Level 6 / QF-EHEA: Level 1 / EQF-LLL: Level 6) |
Course Language | Turkish |
Methods and Techniques | - |
Mode of Delivery | Face to Face |
Prerequisites | - |
Coordinator | - |
Instructor(s) | Asst. Prof. Ali Osman ÇIBIKDİKEN |
Instructor Assistant(s) | - |
Course Instructor(s)
Name and Surname | Room | E-Mail Address | Internal | Meeting Hours |
---|---|---|---|---|
Asst. Prof. Ali Osman ÇIBIKDİKEN | A-124 | [email protected] | 7585 | Monday 14.00-15.00 |
Course Content
Representation, compression, storage, retrieval of data from different media such as images, text, video and audio. Multimedia file formats, multimedia programming APIs, multimedia applications.
Objectives of the Course
The objectives of this course are to: Cover the basic theory and algorithms that are widely used in digital image processing. Expose students to current technologies and issues that are specific to image processing systems. Develop hands-on experience in using computers to process images
Contribution of the Course to Field Teaching
Basic Vocational Courses | |
Specialization / Field Courses | |
Support Courses | X |
Transferable Skills Courses | |
Humanities, Communication and Management Skills Courses |
Relationships between Course Learning Outcomes and Program Outcomes
Relationship Levels | ||||
Lowest | Low | Medium | High | Highest |
1 | 2 | 3 | 4 | 5 |
# | Program Learning Outcomes | Level |
---|---|---|
P1 | Adequate knowledge in mathematics, science and related engineering discipline accumulation; theoretical and practical knowledge in these areas, complex engineering the ability to use in problems. | 5 |
P2 | Ability to identify, formulate, and solve complex engineering problems; ability to select and apply appropriate analysis and modeling methods for this purpose | 5 |
P3 | Ability to design a complex system, process, device or product to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose | 5 |
P4 | Ability to develop, select and use modern techniques and tools for the analysis and solution of complex problems encountered in engineering applications; ability to use information technologies effectively | 5 |
Course Learning Outcomes
Upon the successful completion of this course, students will be able to: | |||
---|---|---|---|
No | Learning Outcomes | Outcome Relationship | Measurement Method ** |
O1 | To analyze digital and analog signal analysis. | P.2.11 | 1,7 |
O2 | Knowledge of digital electronic components and analysis of digital electronic logic circuits | P.2.13 | 1,7 |
O3 | Embedded system programming knowledge | P.3.19 | 1,7 |
O4 | Knowledge and use of fourth generation software development platforms (Matlab, etc.) | P.4.22 | 1,7 |
** Written Exam: 1, Oral Exam: 2, Homework: 3, Lab./Exam: 4, Seminar/Presentation: 5, Term Paper: 6, Application: 7 |
Weekly Detailed Course Contents
Week | Topics |
---|---|
1 | Introduction |
2 | Digital Images |
3 | Image file formats |
4 | Image manipulation and processing |
5 | Image manipulation and processing |
6 | Histograms |
7 | Midterm |
8 | Point operations |
9 | Filters |
10 | Morphological filters |
11 | Color images |
12 | Spectral techniques |
13 | Multimedia applications |
14 | Exam |
Textbook or Material
Resources | Digital Image Processing, 2nd Edition, Gonzales and Woods, Prentice Hall, 2002 |
Evaluation Method and Passing Criteria
In-Term Studies | Quantity | Percentage |
---|---|---|
Attendance | - | - |
Laboratory | - | - |
Practice | - | - |
Course Specific Internship (If Any) | - | - |
Homework | - | - |
Presentation | - | - |
Projects | - | - |
Quiz | - | - |
Midterms | 1 | 40 (%) |
Final Exam | 1 | 60 (%) |
Total | 100 (%) |
ECTS / Working Load Table
Quantity | Duration | Total Work Load | |
---|---|---|---|
Course Week Number and Time | 14 | 3 | 42 |
Out-of-Class Study Time (Pre-study, Library, Reinforcement) | 14 | 4 | 56 |
Midterms | 1 | 3 | 3 |
Quiz | 0 | 0 | 0 |
Homework | 0 | 0 | 0 |
Practice | 0 | 0 | 0 |
Laboratory | 0 | 0 | 0 |
Project | 0 | 0 | 0 |
Workshop | 0 | 0 | 0 |
Presentation/Seminar Preparation | 0 | 0 | 0 |
Fieldwork | 0 | 0 | 0 |
Final Exam | 1 | 3 | 3 |
Other | 14 | 4 | 56 |
Total Work Load: | 160 | ||
Total Work Load / 30 | 5,33 | ||
Course ECTS Credits: | 5 |
Course - Learning Outcomes Matrix
Relationship Levels | ||||
Lowest | Low | Medium | High | Highest |
1 | 2 | 3 | 4 | 5 |
# | Learning Outcomes | P2 | P3 | P4 |
---|---|---|---|---|
O1 | To analyze digital and analog signal analysis. | 4 | - | - |
O2 | Knowledge of digital electronic components and analysis of digital electronic logic circuits | - | 3 | - |
O3 | Embedded system programming knowledge | - | - | 5 |
O4 | Knowledge and use of fourth generation software development platforms (Matlab, etc.) | 2 | - | - |