Your transaction is in progress.
Please Wait...
Course Details
KTO KARATAY UNIVERSITY
İktisadi, İdari ve Sosyal Bilimler Fakültesi
Programme of Islamic Economics and Finance
Course Details
Course Code Course Name Year Period Semester T+A+L Credit ECTS
4781105 Python and R Applications 3 Spring 6 3+0+0 4 4
Course Type Elective
Course Cycle Bachelor's (First Cycle) (TQF-HE: Level 6 / QF-EHEA: Level 1 / EQF-LLL: Level 6)
Course Language Turkish
Methods and Techniques -
Mode of Delivery Face to Face
Prerequisites -
Coordinator -
Instructor(s) Asst. Prof. Selahattin BEKTAŞ
Instructor Assistant(s) -
Course Instructor(s)
Name and Surname Room E-Mail Address Internal Meeting Hours
Asst. Prof. Selahattin BEKTAŞ C-Z10 [email protected] 7339
Course Content
Bu ders, Python ve R programlama dillerinin veri analizi, istatistiksel modelleme, veri görselleştirme ve makine öğrenmesi uygulamalarıyla gerçek dünya projelerinde nasıl kullanılacağını kapsamaktadır.
Objectives of the Course
The aim of this course is to teach how to use Python and R programming languages in data analysis and statistical modeling. Students will learn how to process data, visualize results, and implement statistical analyses and machine learning algorithms using Python and R, understanding the strengths of both languages. Additionally, they will develop the skills to create projects in both languages.
Contribution of the Course to Field Teaching
Basic Vocational Courses X
Specialization / Field Courses X
Support Courses
Transferable Skills Courses
Humanities, Communication and Management Skills Courses
Relationships between Course Learning Outcomes and Program Outcomes
Relationship Levels
Lowest Low Medium High Highest
1 2 3 4 5
# Program Learning Outcomes Level
P1 İslam İktisadı ve Finans alanında kuramsal ve uygulamalı bilgilere sahip olma, sahip olduğu bilgileri kullanabilme 4
P2 İslam İktisadı ve Finans alanında edindiği bilgi, beceri ve yetkinlikleri kullanarak meseleleri tanımlama, veri toplama, değerlendirme, analiz etme, yorumlama ve çözüm önerisi geliştirebilme 3
P3 İslam İktisadı ve Finans alanıyla ilgili farklı bilgi kaynaklarına erişip sayısal analiz ve araştırma yapabilme 4
P4 Disiplin içi, çok disiplinli veya çok kültürlü gruplarda ve bireysel çalışabilme 3
P5 Ahlaki değerler ve mesleki sorumluluk bilinci ile hareket edebilme 3
P6 Alan uygulamalarının, evrensel ve toplumsal etkileri ile hukuki sonuçlarını bilme 3
P7 Öğrenim dilinde yazılı ve sözlü iletişim kurabilme, en az bir yabancı dil bilgisine sahip olabilme 5
Course Learning Outcomes
Upon the successful completion of this course, students will be able to:
No Learning Outcomes Outcome Relationship Measurement Method **
O1 Critically evaluates the results of numerical analyses. P.3.5 1
O2 Shares research results in the form of scientific articles, reports, and presentations. P.3.6 1
** Written Exam: 1, Oral Exam: 2, Homework: 3, Lab./Exam: 4, Seminar/Presentation: 5, Term Paper: 6, Application: 7
Weekly Detailed Course Contents
Week Topics
1 Introduction and Programming Fundamentals: Introduction to Python and R
2 Data Types and Variables
3 Control Structures and Loops
4 Functions and Modules
5 Data Reading and Writing: File Operations
6 Data Analysis and Visualization
7 Statistical Analysis and Data Manipulation
8 Introduction to Data Science Projects
9 Fundamentals of Machine Learning
10 Regression and Classification Models
11 Time Series Analysis
12 Big Data and Cloud Computing
13 Project Management and Applications
14 Project Management and Applications
Textbook or Material
Resources Python Ve R Uygulamaları İle Stokastik Süreçler Teori – Uygulama
Evaluation Method and Passing Criteria
In-Term Studies Quantity Percentage
Attendance - -
Course Specific Internship (If Any) - -
Homework - -
Presentation - -
Projects - -
Midterms 1 40 (%)
Final Exam 1 60 (%)
Total 100 (%)
ECTS / Working Load Table
Quantity Duration Total Work Load
Course Week Number and Time 14 3 42
Out-of-Class Study Time (Pre-study, Library, Reinforcement) 14 2 28
Midterms 1 20 20
Quiz 0 0 0
Homework 0 0 0
Practice 0 0 0
Laboratory 0 0 0
Project 0 0 0
Workshop 0 0 0
Presentation/Seminar Preparation 0 0 0
Fieldwork 0 0 0
Final Exam 1 30 30
Other 0 0 0
Total Work Load: 120
Total Work Load / 30 4
Course ECTS Credits: 4
Course - Learning Outcomes Matrix
Relationship Levels
Lowest Low Medium High Highest
1 2 3 4 5
# Learning Outcomes P3
O1 Critically evaluates the results of numerical analyses. 5
O2 Shares research results in the form of scientific articles, reports, and presentations. 4