Your transaction is in progress.
Please Wait...
Course Details
KTO KARATAY UNIVERSITY
Mühendislik ve Doğa Bilimleri Fakültesi
Programme of Industrial Engineering
Course Details
Course Code Course Name Year Period Semester T+A+L Credit ECTS
88600006 Linear Algebra 1 Spring 2 3+0+0 3 5
Course Type Compulsory
Course Cycle Bachelor's (First Cycle) (TQF-HE: Level 6 / QF-EHEA: Level 1 / EQF-LLL: Level 6)
Course Language Turkish
Methods and Techniques -
Mode of Delivery Face to Face
Prerequisites -
Coordinator Prof. Murat DARÇIN
Instructor(s) Asst. Prof. Nurten URLU ÖZALAN
Instructor Assistant(s) -
Course Instructor(s)
Name and Surname Room E-Mail Address Internal Meeting Hours
Asst. Prof. Nurten URLU ÖZALAN A-130 [email protected] 7880
Course Content
-Matrices: Definition of matrix, Types of matrices, matrix equality, Sum and difference of matrices, The product of scaler and matrix and their properties , Transpose of matrix and its properties - Some Special Matrices and Matrix Applications - Elementary row and column operations in matrices, Reduced row–echelon form, Rank of a matrix, The inverse of a square matrix, - Determinants: The determinant of a square matrix, Laplace's expansion, Properties of determinants -Sarrus rule, Additional matrix, Calculation of the inverse of a matrix with the aid of additional matrix - Systems of Linear Equations: Solving systems of linear equations with the aid of equivalent matrices, Linear homogeneous equations, -Cramer's method, The solution with the help of coefficients matrix -Vectors: Vector definition, the sum of vectors, the difference, the analytical expression vectors, scalar product of vectors, properties of the scalar multiplication Scalar product and its features, the mixed multiplication and properties, and properties of double vector product, -Vector spaces: Definition of vector spaces and theorems. Subspaces. Span concept and fundamental theorems. Linear dependence and linear independence of vectors and some theorems about linear dependence and linear independence. -Bases and dimension concepts and fundamental theorems. Definition of coordinates and transition matrices and some theorems. -Eigenvalues and Eigenvectors: The Calculation of Eigenvalues and Eigenvectors of a square matrix, - The calculation of Inverse and power of a square matrix with the help of the Cayley-Hamilton theorem.
Objectives of the Course
create the necessary information for more advanced mathematics topics
Contribution of the Course to Field Teaching
Basic Vocational Courses X
Specialization / Field Courses
Support Courses
Transferable Skills Courses
Humanities, Communication and Management Skills Courses
Relationships between Course Learning Outcomes and Program Outcomes
Relationship Levels
Lowest Low Medium High Highest
1 2 3 4 5
# Program Learning Outcomes Level
P1 Sufficient knowledge of mathematics, science and Industrial Engineering discipline-specific subjects; Ability to use theoretical and applied knowledge in these fields to solve complex Industrial Engineering problems 5
Course Learning Outcomes
Upon the successful completion of this course, students will be able to:
No Learning Outcomes Outcome Relationship Measurement Method **
O1 Matris Cebrini bilir. P.1.120 1
O2 Determinantlarda işlem yapabilir. P.1.121 1
O3 Lineer Denklem Sistemleri ve Çözüm Yöntemlerini bilir. P.1.122 1
O4 Lineer dönüşümler ile işlem yapabilir. P.1.123 1
O5 Özdeğer ve öz vektör kavramlarını bilir. P.1.124 1
O6 Vektör uzaylarında işlem yapabilir. P.1.125 1
** Written Exam: 1, Oral Exam: 2, Homework: 3, Lab./Exam: 4, Seminar/Presentation: 5, Term Paper: 6, Application: 7
Weekly Detailed Course Contents
Week Topics
1 Matrisler, matris çarpımı
2 Matris işlemlerinin cebirsel özellikleri
3 Bir matrisin eşelon şekli, elemanter satır ve sütun işlemleri
4 Determinantlar ve özellikleri, kofaktör açılımı
5 Gauss eliminasyon yöntemi ile determinant hesabı
6 Matris tersleri
7 Vektör uzayları, germe, lineer bağımsızlık
8 Ara sınav
9 Vektör uzaylarında taban ve boyut
10 İç çarpım uzayları
11 Lineer denklem sistemleri
12 Lineer denklem sistemleri
13 Lineer dönüşümler
14 Özdeğer ve özvektörler
15 Final sınavına hazırlık
Textbook or Material
Resources Dursun Taşçı, Lineer Cebir, Gazi Kitabevi, 2006
Evaluation Method and Passing Criteria
In-Term Studies Quantity Percentage
Attendance - -
Laboratory - -
Practice - -
Field Study - -
Course Specific Internship (If Any) - -
Homework - -
Presentation - -
Projects - -
Seminar - -
Quiz - -
Listening - -
Midterms 1 40 (%)
Final Exam 1 60 (%)
Total 100 (%)
ECTS / Working Load Table
Quantity Duration Total Work Load
Course Week Number and Time 14 3 42
Out-of-Class Study Time (Pre-study, Library, Reinforcement) 14 4 56
Midterms 1 20 20
Quiz 0 0 0
Homework 0 0 0
Practice 0 0 0
Laboratory 0 0 0
Project 0 0 0
Workshop 0 0 0
Presentation/Seminar Preparation 0 0 0
Fieldwork 0 0 0
Final Exam 1 32 32
Other 0 0 0
Total Work Load: 150
Total Work Load / 30 5
Course ECTS Credits: 5
Course - Learning Outcomes Matrix
Relationship Levels
Lowest Low Medium High Highest
1 2 3 4 5
# Learning Outcomes P1
O1 Matris Cebrini bilir. 5
O2 Determinantlarda işlem yapabilir. 5
O3 Lineer Denklem Sistemleri ve Çözüm Yöntemlerini bilir. 5
O4 Lineer dönüşümler ile işlem yapabilir. 5
O5 Özdeğer ve öz vektör kavramlarını bilir. 5
O6 Vektör uzaylarında işlem yapabilir. 5