Industrial Engineering
Course Details

KTO KARATAY UNIVERSITY
Mühendislik ve Doğa Bilimleri Fakültesi
Programme of Industrial Engineering
Course Details
Mühendislik ve Doğa Bilimleri Fakültesi
Programme of Industrial Engineering
Course Details

| Course Code | Course Name | Year | Period | Semester | T+A+L | Credit | ECTS |
|---|---|---|---|---|---|---|---|
| 88600006 | Linear Algebra | 1 | Spring | 2 | 3+0+0 | 3 | 5 |
| Course Type | Compulsory |
| Course Cycle | Bachelor's (First Cycle) (TQF-HE: Level 6 / QF-EHEA: Level 1 / EQF-LLL: Level 6) |
| Course Language | Turkish |
| Methods and Techniques | - |
| Mode of Delivery | Face to Face |
| Prerequisites | - |
| Coordinator | Prof. Murat DARÇIN |
| Instructor(s) | Asst. Prof. Nurten URLU ÖZALAN |
| Instructor Assistant(s) | - |
Course Instructor(s)
| Name and Surname | Room | E-Mail Address | Internal | Meeting Hours |
|---|---|---|---|---|
| Asst. Prof. Nurten URLU ÖZALAN | A-130 | [email protected] | 7880 |
Course Content
-Matrices: Definition of matrix, Types of matrices, matrix equality, Sum and difference of matrices, The product of scaler and matrix and their properties , Transpose of matrix and its properties - Some Special Matrices and Matrix Applications - Elementary row and column operations in matrices, Reduced row–echelon form, Rank of a matrix, The inverse of a square matrix, - Determinants: The determinant of a square matrix, Laplace's expansion, Properties of determinants -Sarrus rule, Additional matrix, Calculation of the inverse of a matrix with the aid of additional matrix - Systems of Linear Equations: Solving systems of linear equations with the aid of equivalent matrices, Linear homogeneous equations, -Cramer's method, The solution with the help of coefficients matrix -Vectors: Vector definition, the sum of vectors, the difference, the analytical expression vectors, scalar product of vectors, properties of the scalar multiplication Scalar product and its features, the mixed multiplication and properties, and properties of double vector product, -Vector spaces: Definition of vector spaces and theorems. Subspaces. Span concept and fundamental theorems. Linear dependence and linear independence of vectors and some theorems about linear dependence and linear independence. -Bases and dimension concepts and fundamental theorems. Definition of coordinates and transition matrices and some theorems. -Eigenvalues and Eigenvectors: The Calculation of Eigenvalues and Eigenvectors of a square matrix, - The calculation of Inverse and power of a square matrix with the help of the Cayley-Hamilton theorem.
Objectives of the Course
create the necessary information for more advanced mathematics topics
Contribution of the Course to Field Teaching
| Basic Vocational Courses | X |
| Specialization / Field Courses | |
| Support Courses | |
| Transferable Skills Courses | |
| Humanities, Communication and Management Skills Courses |
Relationships between Course Learning Outcomes and Program Outcomes
| Relationship Levels | ||||
| Lowest | Low | Medium | High | Highest |
| 1 | 2 | 3 | 4 | 5 |
| # | Program Learning Outcomes | Level |
|---|---|---|
| P1 | Sufficient knowledge of mathematics, science and Industrial Engineering discipline-specific subjects; Ability to use theoretical and applied knowledge in these fields to solve complex Industrial Engineering problems | 5 |
Course Learning Outcomes
| Upon the successful completion of this course, students will be able to: | |||
|---|---|---|---|
| No | Learning Outcomes | Outcome Relationship | Measurement Method ** |
| O1 | Matris Cebrini bilir. | P.1.120 | 1 |
| O2 | Determinantlarda işlem yapabilir. | P.1.121 | 1 |
| O3 | Lineer Denklem Sistemleri ve Çözüm Yöntemlerini bilir. | P.1.122 | 1 |
| O4 | Lineer dönüşümler ile işlem yapabilir. | P.1.123 | 1 |
| O5 | Özdeğer ve öz vektör kavramlarını bilir. | P.1.124 | 1 |
| O6 | Vektör uzaylarında işlem yapabilir. | P.1.125 | 1 |
| ** Written Exam: 1, Oral Exam: 2, Homework: 3, Lab./Exam: 4, Seminar/Presentation: 5, Term Paper: 6, Application: 7 | |||
Weekly Detailed Course Contents
| Week | Topics |
|---|---|
| 1 | Matrisler, matris çarpımı |
| 2 | Matris işlemlerinin cebirsel özellikleri |
| 3 | Bir matrisin eşelon şekli, elemanter satır ve sütun işlemleri |
| 4 | Determinantlar ve özellikleri, kofaktör açılımı |
| 5 | Gauss eliminasyon yöntemi ile determinant hesabı |
| 6 | Matris tersleri |
| 7 | Vektör uzayları, germe, lineer bağımsızlık |
| 8 | Ara sınav |
| 9 | Vektör uzaylarında taban ve boyut |
| 10 | İç çarpım uzayları |
| 11 | Lineer denklem sistemleri |
| 12 | Lineer denklem sistemleri |
| 13 | Lineer dönüşümler |
| 14 | Özdeğer ve özvektörler |
| 15 | Final sınavına hazırlık |
Textbook or Material
| Resources | Dursun Taşçı, Lineer Cebir, Gazi Kitabevi, 2006 |
Evaluation Method and Passing Criteria
| In-Term Studies | Quantity | Percentage |
|---|---|---|
| Attendance | - | - |
| Laboratory | - | - |
| Practice | - | - |
| Field Study | - | - |
| Course Specific Internship (If Any) | - | - |
| Homework | - | - |
| Presentation | - | - |
| Projects | - | - |
| Seminar | - | - |
| Quiz | - | - |
| Listening | - | - |
| Midterms | 1 | 40 (%) |
| Final Exam | 1 | 60 (%) |
| Total | 100 (%) | |
ECTS / Working Load Table
| Quantity | Duration | Total Work Load | |
|---|---|---|---|
| Course Week Number and Time | 14 | 3 | 42 |
| Out-of-Class Study Time (Pre-study, Library, Reinforcement) | 14 | 4 | 56 |
| Midterms | 1 | 20 | 20 |
| Quiz | 0 | 0 | 0 |
| Homework | 0 | 0 | 0 |
| Practice | 0 | 0 | 0 |
| Laboratory | 0 | 0 | 0 |
| Project | 0 | 0 | 0 |
| Workshop | 0 | 0 | 0 |
| Presentation/Seminar Preparation | 0 | 0 | 0 |
| Fieldwork | 0 | 0 | 0 |
| Final Exam | 1 | 32 | 32 |
| Other | 0 | 0 | 0 |
| Total Work Load: | 150 | ||
| Total Work Load / 30 | 5 | ||
| Course ECTS Credits: | 5 | ||
Course - Learning Outcomes Matrix
| Relationship Levels | ||||
| Lowest | Low | Medium | High | Highest |
| 1 | 2 | 3 | 4 | 5 |
| # | Learning Outcomes | P1 |
|---|---|---|
| O1 | Matris Cebrini bilir. | 5 |
| O2 | Determinantlarda işlem yapabilir. | 5 |
| O3 | Lineer Denklem Sistemleri ve Çözüm Yöntemlerini bilir. | 5 |
| O4 | Lineer dönüşümler ile işlem yapabilir. | 5 |
| O5 | Özdeğer ve öz vektör kavramlarını bilir. | 5 |
| O6 | Vektör uzaylarında işlem yapabilir. | 5 |
