Your transaction is in progress.
Please Wait...
Course Details
KTO KARATAY UNIVERSITY
Mühendislik ve Doğa Bilimleri Fakültesi
Programme of Industrial Engineering
Course Details
Course Code Course Name Year Period Semester T+A+L Credit ECTS
88600002 Mathematics - I 1 Autumn 1 4+0+0 4 5
Course Type Compulsory
Course Cycle Bachelor's (First Cycle) (TQF-HE: Level 6 / QF-EHEA: Level 1 / EQF-LLL: Level 6)
Course Language Turkish
Methods and Techniques -
Mode of Delivery Face to Face
Prerequisites -
Coordinator Prof. Murat DARÇIN
Instructor(s) Asst. Prof. Nurten URLU ÖZALAN
Instructor Assistant(s) -
Course Instructor(s)
Name and Surname Room E-Mail Address Internal Meeting Hours
Asst. Prof. Nurten URLU ÖZALAN A-130 [email protected] 7880
Course Content
Functions, Limits and Continuity, Derivatives, Fundamental Theorem of Calculus, Applications of Definite Integrals: Calculations of Areas of Plane Regions, Area Between Two Curves, Calculation of Volume of Rotational Bodies, Arc Length, Areas of Rotary Surfaces, Generalized (Imroper) Integrals, I.Tip and II. Type generalized (imroper) integrals
Objectives of the Course
To give basic mathematical knowledge and to provide analytical thinking skills.
Contribution of the Course to Field Teaching
Basic Vocational Courses X
Specialization / Field Courses
Support Courses
Transferable Skills Courses
Humanities, Communication and Management Skills Courses
Relationships between Course Learning Outcomes and Program Outcomes
Relationship Levels
Lowest Low Medium High Highest
1 2 3 4 5
# Program Learning Outcomes Level
P1 Sufficient knowledge of mathematics, science and Industrial Engineering discipline-specific subjects; Ability to use theoretical and applied knowledge in these fields to solve complex Industrial Engineering problems 5
Course Learning Outcomes
Upon the successful completion of this course, students will be able to:
No Learning Outcomes Outcome Relationship Measurement Method **
O1 Öğrenciler tek değişkenli fonksiyonlarda limit, süreklilik ve türev kavramlarını kullanmayı bilir. P.1.81 1
O2 Öğrenciler fonksiyonların grafiğini, asimptotları, kritik noktaları, azalan/artan özellikleri ve konkavlığını inceleyerek çizer. P.1.82 1
O3 Öğrenciler maksimum minimum problemlerini kurma ve türev kullanarak çözer. P.1.83 1
O4 Öğrenciler integral Hesabın Esas Teoremini kullanarak belirli integrali hesaplama ve belirli integral yardımıyla alan, hacim ve uzunluk hesaplar. P.1.84 1
O5 Öğrenciler transandant fonksiyonlarla işlem yapma ve integral alma tekniklerini uygular. P.1.85 1
** Written Exam: 1, Oral Exam: 2, Homework: 3, Lab./Exam: 4, Seminar/Presentation: 5, Term Paper: 6, Application: 7
Weekly Detailed Course Contents
Week Topics
1 Real numbers and Real number records, Cartesian Coordinates in the Plane, Graphs of second degree calculations, Functions and Graphs,
2 Composite functions, Polynomials and Rational Functions, Trigonometric Functions,
3 Informal definition of limit, One-sided limits, Formal definition of limit, Limit rules, Limit on graphs, Limit in polynomial and rational functions
4 Reduction and conjugate method in limits, Sandwich Theorem, Limit in Trigonometric functions, Limits at Infinity and Infinite Limits
5 Continuity, Types of Discontinuity, Derivative as a function, Differentiation Rules
6 Chain Rule, Derivatives of Trigonometric Functions, Derivatives of Logarithmic Functions, Derivatives of Exponential Functions
7 Higher order derivatives, L'hospital's rule and indefinite shapes
8 Midterm Exam
9 Extreme values ??of functions, Critical points Rolle's Theorem, Mean Value Theorem, First Derivative Test for Local Extrema, Concavity, Second Derivative Test for Concavity, Inflection Points, Second Derivative Test for Local Extrema
10 TDrawing Detailed Function Graphs (with the help of Derivatives) and Optimization Problems,Primitive Functions and Initial Value Problems (Primitive Functions and Indefinite Integral), Sum and Sigma Symbols
11 Integration Techniques: Substitution Technique (Variable Substitution), Partial Integration, Trigonometric Integrals, Reduction Formulas
12 Trigonometric Variable Conversions, Tan Variable Substitution, Integration of Rational Functions with Partial Fractions
13 Generalized (Imroper) Integrals, I.Type and II. Type Generalized (Imroper) integrals
14 Genelleştirilmiş (Imroper ) Integraller , I.Tip ve II. Tip Genelleştirilmiş (Imroper) integraller
15 Final Exam
Textbook or Material
Resources Calculus for Engineering Students 1st Edition Fundamentals, Real Problems, and Computers, elsevier, 2020
Evaluation Method and Passing Criteria
In-Term Studies Quantity Percentage
Attendance - -
Laboratory - -
Practice - -
Field Study - -
Course Specific Internship (If Any) - -
Homework - -
Presentation - -
Projects - -
Seminar - -
Quiz - -
Listening - -
Midterms 1 40 (%)
Final Exam 1 60 (%)
Total 100 (%)
ECTS / Working Load Table
Quantity Duration Total Work Load
Course Week Number and Time 14 4 56
Out-of-Class Study Time (Pre-study, Library, Reinforcement) 14 4 56
Midterms 1 14 14
Quiz 0 0 0
Homework 0 0 0
Practice 0 0 0
Laboratory 0 0 0
Project 0 0 0
Workshop 0 0 0
Presentation/Seminar Preparation 0 0 0
Fieldwork 0 0 0
Final Exam 1 24 24
Other 0 0 0
Total Work Load: 150
Total Work Load / 30 5
Course ECTS Credits: 5
Course - Learning Outcomes Matrix
Relationship Levels
Lowest Low Medium High Highest
1 2 3 4 5
# Learning Outcomes P1
O1 Öğrenciler tek değişkenli fonksiyonlarda limit, süreklilik ve türev kavramlarını kullanmayı bilir. 5
O2 Öğrenciler fonksiyonların grafiğini, asimptotları, kritik noktaları, azalan/artan özellikleri ve konkavlığını inceleyerek çizer. 5
O3 Öğrenciler maksimum minimum problemlerini kurma ve türev kullanarak çözer. 5
O4 Öğrenciler integral Hesabın Esas Teoremini kullanarak belirli integrali hesaplama ve belirli integral yardımıyla alan, hacim ve uzunluk hesaplar. 5
O5 Öğrenciler transandant fonksiyonlarla işlem yapma ve integral alma tekniklerini uygular. 5