Industrial Engineering
Course Details

KTO KARATAY UNIVERSITY
Mühendislik ve Doğa Bilimleri Fakültesi
Programme of Industrial Engineering
Course Details
Mühendislik ve Doğa Bilimleri Fakültesi
Programme of Industrial Engineering
Course Details

| Course Code | Course Name | Year | Period | Semester | T+A+L | Credit | ECTS |
|---|---|---|---|---|---|---|---|
| 88600002 | Mathematics - I | 1 | Autumn | 1 | 4+0+0 | 4 | 5 |
| Course Type | Compulsory |
| Course Cycle | Bachelor's (First Cycle) (TQF-HE: Level 6 / QF-EHEA: Level 1 / EQF-LLL: Level 6) |
| Course Language | Turkish |
| Methods and Techniques | - |
| Mode of Delivery | Face to Face |
| Prerequisites | - |
| Coordinator | Prof. Murat DARÇIN |
| Instructor(s) | Asst. Prof. Nurten URLU ÖZALAN |
| Instructor Assistant(s) | - |
Course Instructor(s)
| Name and Surname | Room | E-Mail Address | Internal | Meeting Hours |
|---|---|---|---|---|
| Asst. Prof. Nurten URLU ÖZALAN | A-130 | [email protected] | 7880 |
Course Content
Functions, Limits and Continuity, Derivatives, Fundamental Theorem of Calculus, Applications of Definite Integrals: Calculations of Areas of Plane Regions, Area Between Two Curves, Calculation of Volume of Rotational Bodies, Arc Length, Areas of Rotary Surfaces, Generalized (Imroper) Integrals, I.Tip and II. Type generalized (imroper) integrals
Objectives of the Course
To give basic mathematical knowledge and to provide analytical thinking skills.
Contribution of the Course to Field Teaching
| Basic Vocational Courses | X |
| Specialization / Field Courses | |
| Support Courses | |
| Transferable Skills Courses | |
| Humanities, Communication and Management Skills Courses |
Relationships between Course Learning Outcomes and Program Outcomes
| Relationship Levels | ||||
| Lowest | Low | Medium | High | Highest |
| 1 | 2 | 3 | 4 | 5 |
| # | Program Learning Outcomes | Level |
|---|---|---|
| P1 | Sufficient knowledge of mathematics, science and Industrial Engineering discipline-specific subjects; Ability to use theoretical and applied knowledge in these fields to solve complex Industrial Engineering problems | 5 |
Course Learning Outcomes
| Upon the successful completion of this course, students will be able to: | |||
|---|---|---|---|
| No | Learning Outcomes | Outcome Relationship | Measurement Method ** |
| O1 | Öğrenciler tek değişkenli fonksiyonlarda limit, süreklilik ve türev kavramlarını kullanmayı bilir. | P.1.81 | 1 |
| O2 | Öğrenciler fonksiyonların grafiğini, asimptotları, kritik noktaları, azalan/artan özellikleri ve konkavlığını inceleyerek çizer. | P.1.82 | 1 |
| O3 | Öğrenciler maksimum minimum problemlerini kurma ve türev kullanarak çözer. | P.1.83 | 1 |
| O4 | Öğrenciler integral Hesabın Esas Teoremini kullanarak belirli integrali hesaplama ve belirli integral yardımıyla alan, hacim ve uzunluk hesaplar. | P.1.84 | 1 |
| O5 | Öğrenciler transandant fonksiyonlarla işlem yapma ve integral alma tekniklerini uygular. | P.1.85 | 1 |
| ** Written Exam: 1, Oral Exam: 2, Homework: 3, Lab./Exam: 4, Seminar/Presentation: 5, Term Paper: 6, Application: 7 | |||
Weekly Detailed Course Contents
| Week | Topics |
|---|---|
| 1 | Real numbers and Real number records, Cartesian Coordinates in the Plane, Graphs of second degree calculations, Functions and Graphs, |
| 2 | Composite functions, Polynomials and Rational Functions, Trigonometric Functions, |
| 3 | Informal definition of limit, One-sided limits, Formal definition of limit, Limit rules, Limit on graphs, Limit in polynomial and rational functions |
| 4 | Reduction and conjugate method in limits, Sandwich Theorem, Limit in Trigonometric functions, Limits at Infinity and Infinite Limits |
| 5 | Continuity, Types of Discontinuity, Derivative as a function, Differentiation Rules |
| 6 | Chain Rule, Derivatives of Trigonometric Functions, Derivatives of Logarithmic Functions, Derivatives of Exponential Functions |
| 7 | Higher order derivatives, L'hospital's rule and indefinite shapes |
| 8 | Midterm Exam |
| 9 | Extreme values ??of functions, Critical points Rolle's Theorem, Mean Value Theorem, First Derivative Test for Local Extrema, Concavity, Second Derivative Test for Concavity, Inflection Points, Second Derivative Test for Local Extrema |
| 10 | TDrawing Detailed Function Graphs (with the help of Derivatives) and Optimization Problems,Primitive Functions and Initial Value Problems (Primitive Functions and Indefinite Integral), Sum and Sigma Symbols |
| 11 | Integration Techniques: Substitution Technique (Variable Substitution), Partial Integration, Trigonometric Integrals, Reduction Formulas |
| 12 | Trigonometric Variable Conversions, Tan Variable Substitution, Integration of Rational Functions with Partial Fractions |
| 13 | Generalized (Imroper) Integrals, I.Type and II. Type Generalized (Imroper) integrals |
| 14 | Genelleştirilmiş (Imroper ) Integraller , I.Tip ve II. Tip Genelleştirilmiş (Imroper) integraller |
| 15 | Final Exam |
Textbook or Material
| Resources | Calculus for Engineering Students 1st Edition Fundamentals, Real Problems, and Computers, elsevier, 2020 |
Evaluation Method and Passing Criteria
| In-Term Studies | Quantity | Percentage |
|---|---|---|
| Attendance | - | - |
| Laboratory | - | - |
| Practice | - | - |
| Field Study | - | - |
| Course Specific Internship (If Any) | - | - |
| Homework | - | - |
| Presentation | - | - |
| Projects | - | - |
| Seminar | - | - |
| Quiz | - | - |
| Listening | - | - |
| Midterms | 1 | 40 (%) |
| Final Exam | 1 | 60 (%) |
| Total | 100 (%) | |
ECTS / Working Load Table
| Quantity | Duration | Total Work Load | |
|---|---|---|---|
| Course Week Number and Time | 14 | 4 | 56 |
| Out-of-Class Study Time (Pre-study, Library, Reinforcement) | 14 | 4 | 56 |
| Midterms | 1 | 14 | 14 |
| Quiz | 0 | 0 | 0 |
| Homework | 0 | 0 | 0 |
| Practice | 0 | 0 | 0 |
| Laboratory | 0 | 0 | 0 |
| Project | 0 | 0 | 0 |
| Workshop | 0 | 0 | 0 |
| Presentation/Seminar Preparation | 0 | 0 | 0 |
| Fieldwork | 0 | 0 | 0 |
| Final Exam | 1 | 24 | 24 |
| Other | 0 | 0 | 0 |
| Total Work Load: | 150 | ||
| Total Work Load / 30 | 5 | ||
| Course ECTS Credits: | 5 | ||
Course - Learning Outcomes Matrix
| Relationship Levels | ||||
| Lowest | Low | Medium | High | Highest |
| 1 | 2 | 3 | 4 | 5 |
| # | Learning Outcomes | P1 |
|---|---|---|
| O1 | Öğrenciler tek değişkenli fonksiyonlarda limit, süreklilik ve türev kavramlarını kullanmayı bilir. | 5 |
| O2 | Öğrenciler fonksiyonların grafiğini, asimptotları, kritik noktaları, azalan/artan özellikleri ve konkavlığını inceleyerek çizer. | 5 |
| O3 | Öğrenciler maksimum minimum problemlerini kurma ve türev kullanarak çözer. | 5 |
| O4 | Öğrenciler integral Hesabın Esas Teoremini kullanarak belirli integrali hesaplama ve belirli integral yardımıyla alan, hacim ve uzunluk hesaplar. | 5 |
| O5 | Öğrenciler transandant fonksiyonlarla işlem yapma ve integral alma tekniklerini uygular. | 5 |
