Your transaction is in progress.
Please Wait...
Course Details
KTO KARATAY UNIVERSITY
Mühendislik ve Doğa Bilimleri Fakültesi
Programme of Industrial Engineering
Course Details
Course Code Course Name Year Period Semester T+A+L Credit ECTS
15281847 Advanced Optimization 4 Spring 8 3+0+0 3 5
Course Type Elective
Course Cycle Bachelor's (First Cycle) (TQF-HE: Level 6 / QF-EHEA: Level 1 / EQF-LLL: Level 6)
Course Language Turkish
Methods and Techniques -
Mode of Delivery Face to Face
Prerequisites -
Coordinator Prof. Murat DARÇIN
Instructor(s) -
Instructor Assistant(s) -
Course Content
Kombinatoryal optimizasyon problemleri ve bunların tamsayılı formülasyonları, Değişik formülasyonların alt ve üst sınır sağlama kapasiteleri bakımından karşılaştırılması, Kesici düzlemler, dal-ve-sınır ve dal-ve-kesi temel çözüm yöntemleri, Problemlerin hesapsal karmaşıklığı ve algoritmik karmaşıklık, Büyük boyutlu problemler için ayrıştırma teknikleri
Objectives of the Course
The aim of this course is to recognize the methods of discrete and combinatorial optimization and to examine the techniques and applications of integer programming.
Contribution of the Course to Field Teaching
Basic Vocational Courses
Specialization / Field Courses X
Support Courses
Transferable Skills Courses
Humanities, Communication and Management Skills Courses
Relationships between Course Learning Outcomes and Program Outcomes
Relationship Levels
Lowest Low Medium High Highest
1 2 3 4 5
# Program Learning Outcomes Level
P2 The ability to define, formulate, and analyze complex industrial engineering problems using fundamental science, mathematics, and engineering knowledge, while keeping in mind the relevant UN Sustainable Development Goals. 5
Course Learning Outcomes
Upon the successful completion of this course, students will be able to:
No Learning Outcomes Outcome Relationship Measurement Method **
O1 Simpleks yöntemi ve türevlerini kullanma becerisi kazanır. P.2.113 1
O2 Sütun oluşturma ve ayrıştırma anlayışı kazanır. P.2.114 1
O3 Dışbükeylik, minimum, maksimum ve eyer noktaları gibi fonksiyonların matematiksel özelliklerini bilir. P.2.115 1
O4 Kısıtsız optimizasyon ve çözüm yaklaşımlarını bilir. P.2.116 1
** Written Exam: 1, Oral Exam: 2, Homework: 3, Lab./Exam: 4, Seminar/Presentation: 5, Term Paper: 6, Application: 7
Weekly Detailed Course Contents
Week Topics
1 Introduction to Optimization
2 Teaching of software necessary for discrete and combinatorial optimization (MATLAB relational and logical operations and basic-mathematical operations)
3 Teaching of software necessary for discrete and combinatorial optimization (MATLAB loops and functions
4 Teaching of software necessary for discrete and combinatorial optimization (MATLAB array and matrix operations)
5 Teaching of software necessary for discrete and combinatorial optimization (MATLAB drawing graph, graph types and graphical optimization)
6 Teaching of software necessary for discrete and combinatorial optimization (MATLAB ans EXCEL optimization applicatios)
7 MATLAB Applications
8 Midterm
9 Unconstrained Optimization
10 Constrained Optimization
11 Solution of integer programming problems: Cutting plane method
12 Solution of integer programming problems: Cutting plane method
13 Solution of integer programming problems: Branch-bound method
14 Discrete heuristic optimization applications
15 Final Sınavına Hazırlık
Textbook or Material
Resources INTRODUCTION TO OPTIMUM DESIGN, JASBIR S. ARORA, Elsevier
INTRODUCTION TO OPTIMUM DESIGN, JASBIR S. ARORA, Elsevier
Evaluation Method and Passing Criteria
In-Term Studies Quantity Percentage
Attendance - -
Laboratory - -
Practice - -
Field Study - -
Course Specific Internship (If Any) - -
Homework - -
Presentation - -
Projects - -
Seminar - -
Quiz - -
Listening - -
Midterms 1 40 (%)
Final Exam 1 60 (%)
Total 100 (%)
ECTS / Working Load Table
Quantity Duration Total Work Load
Course Week Number and Time 14 3 42
Out-of-Class Study Time (Pre-study, Library, Reinforcement) 14 3 42
Midterms 1 30 30
Quiz 0 0 0
Homework 0 0 0
Practice 0 0 0
Laboratory 0 0 0
Project 0 0 0
Workshop 0 0 0
Presentation/Seminar Preparation 0 0 0
Fieldwork 0 0 0
Final Exam 1 36 36
Other 0 0 0
Total Work Load: 150
Total Work Load / 30 5
Course ECTS Credits: 5
Course - Learning Outcomes Matrix
Relationship Levels
Lowest Low Medium High Highest
1 2 3 4 5
# Learning Outcomes P2
O1 Simpleks yöntemi ve türevlerini kullanma becerisi kazanır. 5
O2 Sütun oluşturma ve ayrıştırma anlayışı kazanır. 5
O3 Dışbükeylik, minimum, maksimum ve eyer noktaları gibi fonksiyonların matematiksel özelliklerini bilir. 5
O4 Kısıtsız optimizasyon ve çözüm yaklaşımlarını bilir. 5