Your transaction is in progress.
Please Wait...
Course Details
KTO KARATAY UNIVERSITY
Mühendislik ve Doğa Bilimleri Fakültesi
Programme of Industrial Engineering
Course Details
Course Code Course Name Year Period Semester T+A+L Credit ECTS
15271740 Data Mining 4 Autumn 7 3+0+0 0 5
Course Type Elective
Course Cycle Bachelor's (First Cycle) (TQF-HE: Level 6 / QF-EHEA: Level 1 / EQF-LLL: Level 6)
Course Language Turkish
Methods and Techniques -
Mode of Delivery Face to Face
Prerequisites -
Coordinator Prof. Murat DARÇIN
Instructor(s) -
Instructor Assistant(s) -
Course Content
Veri madenciliği kavramları, Veri önişleme, Temel bileşen analizi, Kümeleme, Sınıflandırma, Kestirim, K-en yakın komşu algoritması, Karar ağaçları, Yapay sinir zekaları, Birliktelik kuralları
Objectives of the Course
Develop the ability to find patterns and regularities embedded in large data sets and extract useful information from raw data.
Contribution of the Course to Field Teaching
Basic Vocational Courses
Specialization / Field Courses X
Support Courses
Transferable Skills Courses
Humanities, Communication and Management Skills Courses
Relationships between Course Learning Outcomes and Program Outcomes
Relationship Levels
Lowest Low Medium High Highest
1 2 3 4 5
# Program Learning Outcomes Level
P5 Ability to design, conduct experiments, collect data, analyze and interpret results for the study of complex problems or discipline-specific research topics in the field of Industrial Engineering 5
Course Learning Outcomes
Upon the successful completion of this course, students will be able to:
No Learning Outcomes Outcome Relationship Measurement Method **
O1 Veri madenciliği tanımı, süreçlerini ve uygulama örneklerin öğrenir. P.5.23 1
O2 Temel veri madenciliği tekniklerini veri setlerinde uygulayabilir. P.5.24 1
O3 Kullanılan tekniklerin sonuçlarını doğru bir şekilde analiz eder ve model performansını değerlendirir. P.5.25 1
O4 Veri madenciliği konularında karşılaşılan veri güvenliği ve etik kurallar hakkında bilgi sahibi olurlar. P.5.26 1
** Written Exam: 1, Oral Exam: 2, Homework: 3, Lab./Exam: 4, Seminar/Presentation: 5, Term Paper: 6, Application: 7
Weekly Detailed Course Contents
Week Topics
1 Introduction to Data Mining
2 Data Types/Data Quality/Data preprocessing
3 Similarity measures/Data discovery
4 Classification – Basic Concepts/Decision Trees
5 Classification – Near Neighbor Classifier/Naive Bayes
6 Classification – Artificial Neural Networks
7 Classification – Support Vector Machine/Classification Performance Evaluation
8 Midterm Exam
9 Clustering - Core Concepts/Centre-Based Clustering
10 Clustering - Hierarchical Clustering
11 Clustering – Density Based Clustering/Clustering Performance Evaluation
12 Association Analysis
13 Simple and Multiple Linear Regression
14 Basit ve Çoklu Doğrusal Regresyon
15 Preparation for the fianl exam
Textbook or Material
Resources Shumeli, G., Patel, N.R., Bruce, P.C. (2012). Data Mining for Business Intelligence: Concepts, Techniques and Application in Microsoft Excel with XLMiner. E & B Plus.
Shumeli, G., Patel, N.R., Bruce, P.C. (2012). Data Mining for Business Intelligence: Concepts, Techniques and Application in Microsoft Excel with XLMiner. E & B Plus.
Evaluation Method and Passing Criteria
In-Term Studies Quantity Percentage
Attendance - -
Laboratory - -
Practice - -
Field Study - -
Course Specific Internship (If Any) - -
Homework - -
Presentation - -
Projects - -
Seminar - -
Quiz - -
Listening - -
Midterms 1 40 (%)
Final Exam 1 60 (%)
Total 100 (%)
ECTS / Working Load Table
Quantity Duration Total Work Load
Course Week Number and Time 14 3 42
Out-of-Class Study Time (Pre-study, Library, Reinforcement) 14 3 42
Midterms 1 30 30
Quiz 0 0 0
Homework 0 0 0
Practice 0 0 0
Laboratory 0 0 0
Project 0 0 0
Workshop 0 0 0
Presentation/Seminar Preparation 0 0 0
Fieldwork 0 0 0
Final Exam 1 36 36
Other 0 0 0
Total Work Load: 150
Total Work Load / 30 5
Course ECTS Credits: 5
Course - Learning Outcomes Matrix
Relationship Levels
Lowest Low Medium High Highest
1 2 3 4 5
# Learning Outcomes P5
O1 Veri madenciliği tanımı, süreçlerini ve uygulama örneklerin öğrenir. 5
O2 Temel veri madenciliği tekniklerini veri setlerinde uygulayabilir. 5
O3 Kullanılan tekniklerin sonuçlarını doğru bir şekilde analiz eder ve model performansını değerlendirir. 5
O4 Veri madenciliği konularında karşılaşılan veri güvenliği ve etik kurallar hakkında bilgi sahibi olurlar. 5