Your transaction is in progress.
Please Wait...
Course Details
KTO KARATAY UNIVERSITY
Mühendislik ve Doğa Bilimleri Fakültesi
Programme of Industrial Engineering
Course Details
Course Code Course Name Year Period Semester T+A+L Credit ECTS
15271734 Quantitative Techniques in Industrial Engineering 4 Autumn 7 3+0+0 0 5
Course Type Elective
Course Cycle Bachelor's (First Cycle) (TQF-HE: Level 6 / QF-EHEA: Level 1 / EQF-LLL: Level 6)
Course Language Turkish
Methods and Techniques -
Mode of Delivery Face to Face
Prerequisites -
Coordinator Prof. Murat DARÇIN
Instructor(s) Asst. Prof. Esra BOZ
Instructor Assistant(s) -
Course Instructor(s)
Name and Surname Room E-Mail Address Internal Meeting Hours
Asst. Prof. Esra BOZ A-306 [email protected] 7677
Course Content
Derste işlenecek temel konular şunlardır: tahmin yöntemlerine giriş, basit ve hareketli tahmin yöntemleri, Box-Jenkins tahmin süreçleri, durağan ve dinamik ekonomik tahmin yöntemleri ve endüstriyel tahmin yöntemleri.
Objectives of the Course
In production planning and logistics management, it is important to eliminate the estimation of the future to some extent and to make plans and programs more realistic. The aim of this course is to provide students with knowledge about estimation methods.
Contribution of the Course to Field Teaching
Basic Vocational Courses
Specialization / Field Courses X
Support Courses
Transferable Skills Courses
Humanities, Communication and Management Skills Courses
Relationships between Course Learning Outcomes and Program Outcomes
Relationship Levels
Lowest Low Medium High Highest
1 2 3 4 5
# Program Learning Outcomes Level
P1 Knowledge of mathematics, natural sciences, fundamental engineering, computational sciences, and industrial engineering; the ability to apply this knowledge to solve complex engineering problems. 5
P2 The ability to define, formulate, and analyze complex industrial engineering problems using fundamental science, mathematics, and engineering knowledge, while keeping in mind the relevant UN Sustainable Development Goals. 5
P3 The ability to design creative solutions to complex industrial engineering problems; the ability to design complex systems, processes, devices, or products to meet current and future requirements, while considering realistic constraints and conditions. 5
P6 Information about the impacts of engineering applications on society, health and safety, the economy, sustainability, and the environment within the framework of the UN Sustainable Development Goals; awareness of the legal consequences of engineering solutions. 5
Course Learning Outcomes
Upon the successful completion of this course, students will be able to:
No Learning Outcomes Outcome Relationship Measurement Method **
O1 Endüstri Mühendisliğinde kantitatif tekniklerle ilgili genel terimlere hâkim olur. P.1.34 1
O2 Doğrusal programlama, doğrusal olmayan programlama, oyun teorisi, dinamik programlama konularına hâkim olur ve problemlerini çözebilir. P.1.35 1
O3 Karar problemlerinin çözüm yöntemleri hakkında bilgi sahibi olur. P.1.36 1
O4 Doğrusal programlama, doğrusal olmayan programlama, oyun teorisi, dinamik programlama konularına hâkim olur ve problemlerini çözebilir. P.2.52 1
O5 Karşılaşılan gerçek hayat problemleri için matematiksel model kurabilir. P.2.53 1
O6 Karar problemlerinin çözüm yöntemleri hakkında bilgi sahibi olur. P.2.54 1
O7 Doğrusal programlama, doğrusal olmayan programlama, oyun teorisi, dinamik programlama konularına hâkim olur ve problemlerini çözebilir. P.3.30 1
O8 Karşılaşılan gerçek hayat problemleri için matematiksel model kurabilir. P.3.31 1
O9 Karşılaşılan gerçek hayat problemleri için matematiksel model kurabilir. P.6.11 1
** Written Exam: 1, Oral Exam: 2, Homework: 3, Lab./Exam: 4, Seminar/Presentation: 5, Term Paper: 6, Application: 7
Weekly Detailed Course Contents
Week Topics
1 Introduction
2 Decision Theory
3 Linear programming applications
4 Linear programming applications
5 Linear programming applications
6 Linear programming applications
7 Network model formulations
8 Midterm
9 Convex and concave functions
10 Nonlinear programming
11 Nonlinear programming
12 Stochastic programming applications
13 Presentations
14 Presentations
15 Final Sınavına Hazırlık
Textbook or Material
Resources Pecar, B., Davis, G., Lillystone, S., Business Forecasting for Management, Mcgraw Hill, 1994
Pecar, B., Davis, G., Lillystone, S., Business Forecasting for Management, Mcgraw Hill, 1994
Pecar, B., Davis, G., Lillystone, S., Business Forecasting for Management, Mcgraw Hill, 1994
Pecar, B., Davis, G., Lillystone, S., Business Forecasting for Management, Mcgraw Hill, 1994
Evaluation Method and Passing Criteria
In-Term Studies Quantity Percentage
Attendance - -
Laboratory - -
Practice - -
Field Study - -
Course Specific Internship (If Any) - -
Homework - -
Presentation - -
Projects - -
Seminar - -
Quiz - -
Listening - -
Midterms 1 40 (%)
Final Exam 1 60 (%)
Total 100 (%)
ECTS / Working Load Table
Quantity Duration Total Work Load
Course Week Number and Time 14 3 42
Out-of-Class Study Time (Pre-study, Library, Reinforcement) 14 3 42
Midterms 1 30 30
Quiz 0 0 0
Homework 0 0 0
Practice 0 0 0
Laboratory 0 0 0
Project 0 0 0
Workshop 0 0 0
Presentation/Seminar Preparation 0 0 0
Fieldwork 0 0 0
Final Exam 1 36 36
Other 0 0 0
Total Work Load: 150
Total Work Load / 30 5
Course ECTS Credits: 5
Course - Learning Outcomes Matrix
Relationship Levels
Lowest Low Medium High Highest
1 2 3 4 5
# Learning Outcomes P1 P2 P3 P6
O1 Endüstri Mühendisliğinde kantitatif tekniklerle ilgili genel terimlere hâkim olur. 5 - - -
O2 Doğrusal programlama, doğrusal olmayan programlama, oyun teorisi, dinamik programlama konularına hâkim olur ve problemlerini çözebilir. 5 - - -
O3 Karar problemlerinin çözüm yöntemleri hakkında bilgi sahibi olur. 5 - - -
O4 Doğrusal programlama, doğrusal olmayan programlama, oyun teorisi, dinamik programlama konularına hâkim olur ve problemlerini çözebilir. - 5 - -
O5 Karşılaşılan gerçek hayat problemleri için matematiksel model kurabilir. - 5 - -
O6 Karar problemlerinin çözüm yöntemleri hakkında bilgi sahibi olur. - 5 - -
O7 Doğrusal programlama, doğrusal olmayan programlama, oyun teorisi, dinamik programlama konularına hâkim olur ve problemlerini çözebilir. - - 5 -
O8 Karşılaşılan gerçek hayat problemleri için matematiksel model kurabilir. - - 5 -
O9 Karşılaşılan gerçek hayat problemleri için matematiksel model kurabilir. - - - 5